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We examine the response of a finite-temperature two-state system to periodic driving using time-
dependent transition rate theory. This system can exhibit the phenomenon of stochastic resonance,
where raising the temperature increases the signal-to-noise ratio of the response. We obtain the power
spectrum and the distribution of residence times nonperturbatively for any transition rates that are
periodic in time. Given the drive period T, the power spectrum is the Fourier transform of the sum of
“signal,” which is periodic in time with period T, and “noise,” which is the product of an exponential
and a function periodic with period T;. The residence-time distribution is the product of an exponential
and a function that is periodic with period T;. Both the power spectrum and the residence-time distribu-
tion can be calculated exactly given the dependence of the transition rates on the control parameter (e.g.,
asymmetry or temperature). We calculate the characteristics of stochastic resonance for a two-state sys-
tem with activated transition rates and for a quantum-mechanical dissipative two-level system.

PACS number(s): 05.40.+j, 02.50.Ey, 73.50.Td

I. INTRODUCTION

Stochastic resonance (SR) is a phenomenon where the
response of a nonlinear dynamical system to external
driving is enhanced by the presence of noise [1-9]. The
canonical example of SR consists of a particle in a
double-well potential subject to both random noise
(characterized by a temperature T) and periodic forcing,
which could consist of a sinusoidal variation of the asym-
metry energy € of the wells with frequency o, (Fig. 1).
Two relevant experimental characteristics of such a sys-
tem are the power spectrum describing the dynamics of
the particle’s location and the distribution of residence
times in each well, each of which can be used as a signa-
ture of SR. SR occurs when the signal-to-noise ratio
(SNR) of the power spectrum passes through a maximum
as the noise level is increased [2]. In the SR regime the
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FIG. 1. Schematic diagram of asymmetric double-well poten-
tial. The transition rates W, and W_ are modulated by vary-
ing the temperature T or the asymmetry energy €.
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residence-time distribution can display a series of har-
monic peaks [5,6] (in the absence of driving, it is ex-
ponential).

In this paper we discuss the power spectrum and the
residence-time distribution, when the system is strongly
driven. We assume that the undriven dynamics are de-
scribed in terms of transition rates W and W _ between
two states, and that the drive frequency and the interwell
transition rates are much slower than the intrawell relax-
ation rate. The driven dynamics are then determined by
time-dependent transition rates [2]. We show that both
the power spectrum and residence-time distribution for a
periodically driven two-state system possess analytic
properties that allow for exact evaluation of these quanti-
ties. Even when the modulation of the transition rates is
large compared to the rates themselves, exact results can
be obtained straightforwardly by performing numerical
integrals over a single drive period.

We calculate both the power spectrum and residence-
time distribution not only for systems described by classi-
cal, thermally activated rates, but also for systems where
the rates are determined by a quantum-mechanical tun-
neling process; we have shown previously that the quan-
tum case can display SR [9]. The quantum case is partic-
ularly interesting because the dynamics are described ac-
curately by rate equations even for temperatures well
above the “resonance” temperature where the maximum
in the signal-to-noise ratio occurs. In contrast, when the
transition rates are thermally activated, the rate equation
description is breaking down at the temperature of the
“resonance.”

We first establish some notation for the two-state sys-
tem characterized by transition rates [2]. We define the
probability of being in the position state x . =1 [x =—1]
as n, [n_], and the transition rate for the system to
leave that state W (¢) [W_(z)], where the time depen-
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dence of the W’s is induced by the external drive. We as-
sume that the transition rates are periodic with period
T,=2w/w,. Given that the system is in state x,, the
chance that it makes the transition to state x + in an
infinitesimal time dt is W, (¢)dt. Thus, the rate equation
describing the population n . is

dn (1)
dt

=W_(thh_(t)— W (t)n (1)

=W_()—[W (+W_()]n, (r). (1.1)

Relevant correlation functions of x(z) can be obtained
from knowledge of n (¢) [2]; the power spectrum S(w) is
the Fourier transform of C(r)={x(t)x(t+7)), where
( ) denotes the average over t; as shown by McNamara
and Weisenfeld [2],

C(r)=2n (t+7|x 4 ,t)n (1)
+2n  (t+7|x_,t)n (£)—2n,(2)

—2n, (t+7lx_,t)+1), (1.2)

where n_ (t,|xg,¢,) is the probability that the system is in
the state x , at time ¢, given that at time ¢, it was in state
X, and

n ()= lim n,(t|xq,14) . (1.3)

to
The power spectrum S(w) contains a broadband noise
background as well as 5-function peaks. The ratio of the
coefficient of the fundamental peak and the value of the
noise at w, is the signal-to-noise ratio (SNR).

The residence-time distribution ¥, (7) is the probabili-
ty that the system remains in state x ;. for a duration 7; it
is given by

0
Vir=N [ dtoP (1 +7lt0)Z 2 (1o) (1.4)
where N is a normalization constant, P, (t,|t,) is the
probability of first leaving state x at time ¢, given that
the state was entered at time ¢, and Z, (¢) is the proba-
bility that the state was entered at time 2.

For any periodic modulation of the transition rates, the
power spectrum S(w) is the Fourier transform of a tem-
poral correlation function C(7), which is the sum of “sig-
nal” and “noise.” We show that the signal is periodic in
time with period T, and the noise is the product of an
exponential decay with a (different) periodic function
with period T, [10]. The residence-time distribution
V. (7) is the product of an exponential envelope and a
function that is periodic with the drive period T;. The
decay rate of the exponential is just the average of the
relevant rate over the drive period. We show that calcu-
lating both the power spectrum and the residence-time
distribution nonperturbatively can be done by integrating
periodic functions over a single drive period (though ob-
taining the residence-time distribution involves iterating
a set of self-consistent equations).

The paper is organized as follows. Section II discusses
the properties of the power spectrum, Sec. III concerns
the residence-time distribution, Sec. IV applies the results
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to experiments, including those probing a dissipative
quantum two-state system, and Sec. V is a summary.

II. POWER SPECTRUM

This section addresses the power spectrum characteriz-
ing the system’s response, which is the Fourier trans-
form of the temporal correlation function C(r)
=(x(t+7)x(t)), defined in Eq. (1.2). It is shown here
that C(7) is the sum of a signal Cs(7), which is periodic,
Cs(1+T,)=Cg(7), and a noise term Cy(7), which can be
written Cy(r)=e "7y, (1), where Xn(T)=xn(r+T,).
Here, (W) is the time average of the sum of the rates
(W)=(W_()+W_(1))). In Appendix B the power
spectrum S(w) is expressed in terms of the Fourier com-
ponents of Cg(7) and y (7).

We first separate C(7) into signal and noise com-
ponents. The starting point is the expression for C(7) in
terms of the conditional probabilities n . (¢,|x,,¢,), Eq.
(1.2). It is shown in Appendix A that n_(z,)
=lim, _, _.n +(t51xy,1,) is independent of both x,; and
t; and periodic with period T7,. By defining
n (t+7|x,0)=n (t+7|£,t)—n (t+7), one can
write C(7)=Cg(7)+ Cy(7), where

Co(r)=([1—2n_ (t+71)][1—2n_(D)]), 2.1a)
Cy(r)=2([8n  (t+7|+,t)+8n  (t+7|—,t)]n (1)
—8n (t+7|—,1)) . (2.1b)

The calculation of the signal proceeds using the result for
n, (t) given in Appendix A:

TS
n+(t)=—-fl<7y—n,—fo dit*W_(t—t*)e W

—e s

Xh(t—t*,t), (2.2)
where
J— t2 * *

h(t,ty)=exp |— [ “dt*sW(t )} , (2.3)

1

W(t)=W .(t)+W_(t),and 8W(t)=W(t)—(W). Since

W_(t,+T,)=W_(t;) and h(t,+T,t,)=h(t,,t,+T;)

=h(t,,t,), it follows that n , (¢ +T;)=n_ (t). Therefore,

n 4 (1) can be expanded in a Fourier series [11],
lmu)st

ny()= 3 mnilmle )

m=—

(2.4)

and the correlation function Cg(r) is obtained using Eq.
(2.1a):

14, (m=0)+4 3 [n,(m)%e"""

m=—®

Cs(7)=

S Cglme ™™ 2.5)

m=—o®

Clearly, C¢(7) is periodic in the drive period T =27 /w;.
Using the nonperturbative solution of Egs. (2.2) and (2.3)
for n,(t) derived in Appendix A [Eq. (A5)], using Eq.
(2.5) one can obtain Cg(7) for any periodic time depen-
dence of the rates.
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For a small amplitude drive of the form
W, (t)=( W) +w_cos(awt), one can expand the expres-
sion for n_ (¢), Egs. (2.2) and (2.3), in powers of w,. In
the absence of modulation, n, =W _/W. If the rates
obey detailed balance (W /W _ =eBE°+8(BE)°°sm‘”), then
the modulation induces a contribution to n . (t) at zero
frequency as well as at the drive frequency w;. The com-
ponent at o, leads to a signal 8n , (1) ={(w, )cos(w t — @),
where

W, 8(Be)
AW /W) /Wit g?

Ho,)=— (2.6)

and ¢=tan "w,/W). The modulation also causes
the time average (n,) to change; (n, )=W_/
W —(8n, ), where

1 | ¥ @w W s
(8n+>—4wl o W |OF)
_1_1 W
2 @2+ W? | Oh
oW_  aw W_ )
—-= . 2.7
™ W ](Sh) 2.7

Here we have expressed the modulation in terms of a
control parameter h; h =T for temperature driving and
h =¢ for asymmetry modulation. Although the leading-
order signal component at o, depends only on the varia-
tion in € /kz T, {8n , ) depends explicitly on the variation
of the rates themselves.

Equations (2.5) and (2.7) yield the result for Cg(7) to

order k%
Cs(r)= |1 2W" 1 2W‘ 4(dn.)
ST W W "+
+2£%w, )cos(w,T) . (2.8)

The calculation of the continuous portion of the power
spectrum follows from the expression for Cy(7) in terms
of n and n, (Eq. 2.1b) along with the expressions for
Sn, and n in Appendix A [Egs. (A5), (A6b), and (A8)].
We find

(w4 5
Cylr)=e (W) Tsfo dt[1=n_(D]n  (Dh(t,t+7)

=e My (1), (2.9)

where n , (t) is given in Eq. (2.2) and k(#,,?,) is defined in
Eq. (2.3).
In the absence of modulation, the noise contribution to
the power spectrum at w; is
AW . W _ 1
W wite?

SN(ws)|0= (2.10)

Perturbative corrections to Sy(w,) can be obtained
straightforwardly by expanding Eq. (2.9).

The SNR is the ratio of the weight in the 8-function
peak at w, to the amplitude of the broadband noise back-
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ground at this frequency. When the modulation is small,
the leading contribution to the signal is of order (8(Be))>.
The 8-function peak in the power spectrum at w; is calcu-
lated using Egs. (2.8) and (B5); it has magnitude m{X(w,).
When the modulation is small, corrections to the noise
amplitude, which are of order (8(Be))?, do not contribute
to the leading term of the SNR. Thus, Egs. (2.8) and
(2.10) yield the lowest order contribution to the SNR, §
o W.W-_ 2
= 4 W [8(Be)]” . (2.11)
This result agrees with that found previously for a classi-
cal system characterized by activated transition rates
[2,8]. Linear response theory has been used to derive
(2.11) for both asymmetry and temperature modulation
of a classical system [3]. Nonperturbatively, the SNR
can be obtained by dividing the signal and noise obtained
using the nonperturbative results in this section.

We apply our results to calculate nonperturbatively the
power spectra of two-state systems subjected to tempera-
ture driving. In the nonperturbative regime the signal
can be obtained using Egs. (2.2)-(2.8). Numerical in-
tegration is facilitated if one uses a Fourier expansion of
W (t) and integrates (2.3) analytically to obtain h(t,,t,).
The resulting expression is a sum of single integrals over
one drive period, and thus is straightforward to evaluate
numerically.

First we consider activated rates W, =wge

Wi /W_ =" Tm, where T(¢t)=T,+8T cos(w,t). The
transition rates W (t) and W _(t) are shown in Fig. 2;
for the parameter values used (given in the figure) the
modulations of the rates are large compared to their aver-
age values. The resulting signal n . (¢) has significant
harmonic content; the component at 2w, is nearly one-
fourth as large as the fundamental [12]. The noise Sy(w)
for the same parameters is shown in Fig. 3; even though
the first harmonic of ¥y(m) is about 10% of the funda-
mental at m =0, the noise is barely distinguishable from a
simple Lorentzian.

The transition rates for the two-state system undergo-
ing quantum tunneling in the presence of an Ohmic bath
[13] are discussed in Appendix C; the two transition rates

—U/kgT(t)
’

0.10 —
U=100K
£=20K
= Ty,=30K
g o
B' dT=10K
2 005 [ w /w, = 0.082085 -]
3
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0.00 R S
0.0 0.5 1o
t/T,

FIG. 2. Fast rate W, (t) and slow rate W_(t) for a f%?;“ﬁf?
system with activated transition rates, W, =awge L
W, /W_ =™ with T(1)= To+8T cosw,t, for parameter
values given in the figure.
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FIG. 3. Noise Sy(w) for a two-state system with activated
transition rates, for parameter values given in the figure. The
parameter o has been set to unity.

are related by detailed balance, and the dependence of the
normalized fast rate W for a given asymmetry € on the
temperature T is given by

won |1 _(1~2a)ee/2kB(1/T—l/To)
W, (T,) T,
i€ ?
I e+
T kT
X - T (2.12)
ie
ot
O ok, T,

where T, is a reference temperature. As discussed in Ap-
pendix C, a is a parameter that characterizes the cou-
pling between the bath and the two-state system with
asymmetry €. We scale the time so that
W (Ty,=1K)=1.

Figure 4 shows the normalized transition rates as a
function of temperature below 1 K for «=0.25 and
€=0.7 K. The fast rate W, depends only weakly on
temperature and asymmetry. In the limit of a symmetric
well, e/kpT<<1, W, «T 1729 monotonically in-
creases as T decreases. Equation (2.11) yields the normal-
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-
L w0~ e=07K
< .
Q '
w2 .
107
'
' !
0.0 1.0

0.5
T (K)
FIG. 4. Transition rates W, and W_ of a quantum-

mechanical dissipative two-state system vs temperature 7. The
rates are scaled by W,=W  (T=1K).
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FIG. 5. Signal-to-noise ratio for a quantum-mechanical dissi-
pative two-state system in the limit of small modulation [Eq.
(2.11)] vs temperature T. The SNR is scaled by W,(8h )%, where
Wo=W (1 K) and 8k is 8T(8¢) for temperature (asymmetry)
modulation.

ized SNR for this system in the limit of small modula-
tion; the scaled SNR’s for asymmetry and temperature
driving are shown in Fig. 5. Unlike the classical case
where modulation of a symmetric well can yield a max-
imum in the SNR as a function of temperature (e.g., for
asymmetry driving [2,3,6,8]), the quantum case has a
peak only when the well is asymmetric [9]. When
go/kg T >>1, the signal is suppressed by the exponentially
small slow transition rate, i.e., the particle does not leave
the lower well. When kT ~ ¢ the relative occupation in
the upper state depends more sensitively on temperature;
when ky T >>¢ the relative occupations are nearly equal
and the signal again decreases.

Figure 6 shows the numerically evaluated Fourier com-
ponents of the signal Cg(w) [the Fourier transform of

10 —
-1 F 3

107 F e=0.7K g

10 =025 e

ot T=03K |

LB oyWIK) =1

107k
_ -5
E 107 - ~
\(/f) %

10 & _
© 107’ -

E P
-
10" | ,««’f m=0 .
> =
0’ - m= =
- m=1 (P.T.)
10" -~ m= _
3 -~ m=.
T L —
0" 10"
ST/T,

FIG. 6. Fourier coefficients of signal Cs(m) (m =0,1,2) for a
modulated dissipative quantum two-state system with parame-
ter values @=0.25, e=0.7 K, T,=0.3 K, and different values of
8T. The perturbative result for the m =1 component is also
shown.
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C,(7)] at frequencies =0, v =w,, and ©®=2w;, for tem-
perature modulation of the form T(¢)=T,+38T cos(w;?),
for different values of 87. For comparison, we have also
plotted the leading-order perturbative result for the com-
ponent at o,. The nonperturbative corrections appear to
be rather small, and the perturbation theory works
reasonably well even when 8T /T,=2. We have also
plotted the component at 2w, as a function of 8T /T,.
This harmonic is always substantially smaller than the
leading correction, and it depends on the drive as (8T)*
over a substantial range of §7. This dependence is con-
sistent with that obtained using naive power-counting ar-
guments for the perturbation series. The noise Cy(7) is
calculated using Eq. (2.9); for the parameter values used
for Fig. 6 the power spectrum Sy(®) is indistinguishable
from a Lorentzian on a plot, so we do not display it ex-
plicitly. Thus, in both the classical and quantum limits,
the perturbation theory provides a good qualitative
description of the behavior even when the modulation is
not small.

III. RESIDENCE-TIME DISTRIBUTION

The residence-time distribution V(1) describes the
probability that the system remains in state x, for a
duration 7. In this section we show that V(1) can be
written as the product of an exponential and a periodic
function, and we show how to calculate it nonperturba-
tively.

The residence-time distribution obeys

Vi(T):Nf_:dtoPi(tO—Frlto)Zi(to) , (3.1)

where N is a normalization constant, P, (¢,|t,) is the
probability of first leaving the * state at time ¢, given
that the state was entered at time ¢,, and Z . (¢) is the
probability that the state was entered at a time z. The
normalization of Z . (¢) is arbitrary; we choose it so that
[?.dtZ,.()=1; the normalization constant N for
V.(7) is fixed by the condition f;dfr Vi(t)=1. We
define Y. (2*) to be the probability that the state was en-
tered at a time ¢* satisfying ¢*=¢mod(Ty):
Y.()=3p__oZ (t+mT,). By definition, Y_(¢)
=Y. (t+7T,) and [ 'dt Y.(1)=1, and using (3.1) it is
straightforward to show that

Vi(T)=Nf_:dtoPi(to+1'|to)Yi(to) . (3.2)

If the system enters a state at time ¢, in order to remain
until a time between ¢, and ¢, + 8¢, it must first remain in
the state for times less than ¢,, and then leave the state
between ¢, and ¢, +6¢. Thus,

t
Po(t;]t)=W.(ty)exp— [ “dt* W (t*) . (3.3)
1

By defining (W, (1)) =W, (1)—8W (1), it follows that
0T Td*8W , (1)=0. Since W (t+T,)=W.(1),

—AWL(NT,

P (to+7+T,|ty)=e P (to+Tlty) . (3.4)

Therefore, V(1) is the product of an exponential en-
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velope and a function that is periodic with the drive
period T},

Vir=Ne "7G.(n),

where G (7+T,)=G (7).
To calculate the function

(3.5)

TS
Gi(r)=f0 dtgW o (ty+T)

Xexp

to+‘r .
— [ drrswi(e*) |Yilh),
0
(3.6)

one must determine Y, (¢y). At long times the probabili-
ty of arrival relative to the phase of the drive tends to a
fixed distribution, so Y, satisfies

Y= [" dPo(tlt)Y,(t) . 3.7
Using Egs. (3.3) and (3.4), this integral can be recast into
the form

¥s(n=—tD
¥ |—e P2T:

TS
xfo dt, Y. (t—t;)

(W)

Xe exp [—ftl_tldt"aWi(t*) .

(3.8)

Equation (3.8) involves only integrals over finite time in-
tervals. If one integrates [ :_,ldt‘SWi(t‘) analytically

by expanding 8W,.(t) in a Fourier series, only a single
numerical integration over one drive period is necessary.
These equations can be solved by iteration; for instance,
one can start with the function Y (¢)=const, and then
apply Eq. (3.8) repeatedly until the output function no
longer changes as the equation is iterated.

Once Y,(t) is obtained, it is straightforward to use
Egs. (3.5) and (3.6) to obtain V(7). Once again, one
need integrate numerically over only one period of the
drive.

One can use (3.2)-(3.8) to calculate G, (7)=G4,
+38G (1) perturbatively for W (t1)=w_cos(w,?), when
w4 is small. In the limit w =0 the transitions are com-
pletely uncorrelated with the drive, and both Y, (z) and
G . (t) are independent of . We choose the normalization
of V.(7) so that [ 2V, (7)=1; thus in the undriven sys-
tem G:to('r)= W:t'

The effect of the drive is to enhance and suppress the
transition probability periodically. As a result Y (#) ac-
quires a periodic time dependence, ie., Y. (#)=Y,,
+378Y, cos(nwst+8,.). Two successive applications
of Eq. (3.8) yield a self-consistency equation for Y. (1).
One can evaluate the unknown factors in the expression
for Y () by expanding the self-consistent equation in
powers of w,. The leading-order correction to Y (?) is
proportional to w, and at the drive frequency. Using
this in Eq. (3.6), one finds the leading term in 8G . (7),
proportional to w%. Two interesting limiting cases are



4826

g /27 >> W, W_, where to lowest order,

8Gi(r) 1 w_ wy

Gio 3 W W, COSw, T , (3.9a)
and W_ <o, 2m<<W,, SW . —0, where
G, (r)=W,,and

8G_(1) 1 wx
G, =3 Wi, COSw, T . (3.9b)

In the slow modulation limit W, T, <<1 the exponential
falloff in (3.5) dominates and ¥V(7) has no peaks.

In the limit of low temperatures (e /kz T >> 1), the slow
rate W_ is exponentially suppressed and thus extremely
sensitive to temperature (or asymmetry) variation. This
sensitivity implies that the periodically modulated W _
can be represented as a sum of & functions at
times ty+mT, where ¢€/kgT is a minimum,
e, W_(t)=n_3In-_0t—ty—mT,), where 7_
=(W_)T,. In the classical limit, W, (¢) is also strongly
temperature dependent, S0 W, (t)
=104+ 3 .00t —t, —mT;), where t,=t,+T, /2 for & driv-
ing and t; =t for T driving. The self-consistency condi-
tion for Y. (z) obtained by two applications of (3.8) is
satisfied by Y, (t) < 8(¢ —ty) and Y _(¢) < 8(¢t —¢,). Using
these expressions in (3.6), one finds that for € driving
G . (7) have maxima at 7=T; /2 and for T driving, G.(7)
have maxima when 7=T.

In the quantum case W is approximately temperature
independent. Using W, =const and W_=7_3, 6(t
—mT;), and (without loss of generality) taking ¢, =0, one
finds that the self-consiste_n(tho)lution to Eq. (3.8) is
Y. ()<8(t) and Y_(t)xe  *''. G,(r) is a constant
in this limit. When (W _)t>>1, Y_(t) is sharply
peaked near t =0, and from (3.6) one finds that G _(7) has
peaks near 7=T.

The general behavior suggested by (3.9a) and (3.9b)
agrees with results of analog simulations of systems with
classical rates [7]. For a symmetric well with thermally
activated rates, the residence-time distributions have
been previously analyzed in the perturbative and low-
temperature limits [5,14].

We obtain nonperturbative results for ¥ (7) by numer-
ical solution of Egs. (2.2)-(2.8). Qualitatively, the
behavior interpolates smoothly between the perturbative
results and the low temperature, large modulation limit.
For activated rates, V.(7) can display peaks at half-
integral multiples of the drive period if one modulates the
asymmetry (Fig. 7) [15] and near integral multiples of T
if the temperature is modulated (not shown). For the
quantum case, modulating the asymmetry and the tem-
perature lead to qualitatively similar results. Figure 8
shows ¥V _(7) evaluated at the peak of the SNR curve for
T driving shown in Fig. 5 for two frequencies. The fast
modulation limit yields very small harmonic content be-
cause w, is very small. However, in the limit
W_<<1/T;<<W_,, G_(71) is a maximum and V_(7)
displays peaks at values 7=nT,. The residence time dis-
tribution for the upper well ¥ (1) displays little struc-
ture for any drive frequency because W, is nearly con-
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[

FIG. 7. Distribution of residence times V(7) vs 7/T,, ob-
tained by numerical solution of Egs. (3.5)-(3.8) for
a two-state system with activated transition rates W, (¢)
_ —[U—e1)/: ]/kBT _ el BT .
=age , W_(t)=e W (1), with asymmetry
modulation €(¢)=¢gy+6e cosw,t. V. (7)=V_(1) because £,=0;
V(1) is normalized to unity at 7=0. Three different values of
the asymmetry modulation 8¢ are shown; parameter values are
given in the figure. The residence-time distribution has maxima
near half-integral multiples of the drive period T;.
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FIG. 8. Distribution of residence times in the lower energy
well V_(7) vs 7/T,, obtained by numerical solution of Egs.
(3.5)-(3.8) for a two-state system undergoing dissipative quan-
tum tunneling with temperature driving T(:)=T,
+8T cos2mt /T,. V_(7) is normalized to unity at 7=0. (a)
T,=5. (b) T,=0.2. Parameter values are given in the figure;
the units of time are normalized so that W, (T=1 K)=1.
V_(7) displays large oscillations with period 7; when
W_ << 1/T,<<W,. Two different values of T, are shown; as
T, is lowered the oscillations in ¥V _(7) become more pro-
nounced.
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stant in the quantum system. Note that even in lowest
order V. (7) depends explicitly on the temperature depen-
dence of the rates, so that it differs fundamentally from
the SNR. In the fast modulation limit 1/7T;>> W, the
quantum system displays a maximum in the SNR but
very little structure in V. (7). Therefore, these two quan-
tities probe different aspects of the dynamics.

IV. EXPERIMENTAL OBSERVABILITY

Here we estimate the counting time needed to resolve
the SNR and the structure in the residence-time distribu-
tion, given the time-dependent rates W (¢). The theory
presented here assumed that the system has only two
states, so that x takes on only two values (x ., =+1 and
x _ =—1); noise arises only because transitions between
the two states are governed by stochastic equations. In a
real experiment, one expects to observe noise even if the
system remains nominally in a single state. All of our
calculations assume that the noise is dominated by the
stochastic nature of the switching times, so that individu-
al switches can be resolved.

Previously we estimated 7, the time needed to resolve
the signal, using the SNR ratio itself [9]. The SNR &, has
units of frequency because the signal provides &-function
contributions to the power spectrum, whereas the noise is
a continuous function of frequency. In a time series of
duration 7 the minimum frequency bin has width
Aw~2mw/T. One can only resolve the signal if the noise
power in this frequency window is less than the weight of
the signal power contained in the 8 function. Thus, T
must be large enough that

2

‘T>>? . 4.1)

The same estimate can be obtained by applying simple
statistical considerations to the experimentally observed
“telegraph” signal characterizing the transitions between
the two states.

We consider the limit of small modulation, so that the
signal can be obtained using the perturbative expression
[Eq. (2.6)] for n(t). We then ask how long one must
take data so that random uncertainties inherent to mea-
surements of the unmodulated system are smaller than
this signal. We consider the cases w, SW and o, R W
separately.

We first consider the case of slow driving, o, S W. We
resolve the temporal variation in n (¢) by dividing up
each drive period T, into M bins and measuring the
changes in the number of observations of the + state as
the bin index j is varied. Because the correlation between
successive measurements decays with time constant 1/W,
in a time 7 one can make N, =W T /M uncorrelated
measurements in each bin of the system’s state. Without
modulation the system is in state + with probability
W 1 /W. Therefore, the chance of obtaining N, +’s out
of Ntrial trials is

N
Nal! +
Prob(N, )= trial W-
NNy =N | W
W, Nerigg =N 1)
X —_—
W 4.2)
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The binomial distribution (4.2) implies that the expecta-
tion value of N in a bin is (W_ /W )N ,, and that this
value will exhibit statistical fluctuations of size
~ [N W W_ /W]

The signal can be resolved if the modulation induces a
variation in N that is larger than the statistical uncer-
tainty. This criterion leads to the condition that

172
wT |WiW- S¢e > W_Ww.,T
M w Vw2+w? ~ M ’
4.3)
so that
(1+w?/W?)
g LA s 4.4)
W, W_  (8(Be))

This result agrees with Eq. (4.1) when o, S W.

When the sum of the rates W is small compared to the
drive frequency ,, then the estimate (4.4) yields a
significantly longer time than (4.1). However, when
o, >> W, the signal can be resolved more efficiently by
measuring dn . /dt rather than n_ (¢) itself. We once
again divide each drive period T, into M bins and mea-
sure, as a function of bin index j, the quantity
R_.(j, T)—R_(j,T), where R.(j,7T) is the number of
transitions out of the * state in the jth bin observed in a
counting time 7. The probability of a transition out of
the * state in a time interval 6t is n (j)W(j)d¢t. Thus,
the expected number of transitions in the jth bin given an
observation time 7 is

E(j,7)=%ni(j)wi(j) (4.5a)
_T || "= ¥ .
+W bn.(j)|, (4.5b)

where Eq. (4.5b) applies in the limit of weak modulation
and we have used the fact that in the unmodulated sys-
tem, ny =W /W. The modulation leads to a difference
in the expectation value

R G, T)-R_(, D

T ew, sw_ W
M| w, W TP T
W.W_
=L 27 5ige) |[1-—2 (4.6)
M W V Wi+l

To resolve this difference, it must be larger than the VN
fluctuations in the absence of driving, leading to the con-
dition

172

_ - W.,.W_
R, D-R_G, Dz [ L2+ 7= | | @1

M W

from which one obtains
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Tz MW
W W_(8(Be)*[1—W/V Wit w?]?

4.8)

This condition is equivalent to (4.1) when o, >> W.

The expected number of switches out of each state in a
time T is W_ W _T /W, so the condition (4.1) on count-
ing times can be written in the weak modulation limit as

switch R —L ’
(8(Be))?

where N, is the total number of switches in the obser-
vation time.

The maximum SNR attainable for a given 8T or ¢ in-
creases as the lowest experimentally available tempera-
ture T, decreases. For the dissipative tunneling of a
defect in mesoscopic Bi samples (as described in Appen-
dix C), T, is limited to 0.1 K because of Ohmic heating.
For reasonable experimental parameters [16], T, ~0.1
K, e~0.4 K, 66~0.05 K, and W, ~10 Hz, a maximum
SNR of 10 (at 0.2 K) requires 7~ 1100 s. For tempera-
ture driving with 87 ~0.05 K and £~0.7 K, resolving a
SNR of 10 takes 360 s. These times are reasonable since
typical measurement intervals are 200—2000 s long.

The counting times required to resolve structure in the
residence-time distribution restrict the drive frequency.
If the drive frequency is too small compared to the transi-
tion rate in question, the exponential envelope of the
residence-time distribution function causes there to be a
very small fraction of counts at 7R T,. However, the
drive period must be long enough that a reasonable frac-
tion of the residence times are in the interval between O
and T,. The drive period also affects the magnitude of
the structure in V(7) that one is trying to resolve. In par-
ticular for the quantum case, the oscillations are much
larger if W, >>1/T, than when W S1/T,.

The counting time required to resolve structure in V(1)
can be estimated by comparing the theoretical amplitude
of the oscillations to the statistical fluctuations inherent
in the experiment. The uncertainties in number of
residence times with values of 7 in bins of width T, /M
are given by V'N fluctuations in the number of counts in
each bin. For the parameters of Fig. 8 with W ~10 Hz
and T,=0.2 K the structure in V_(7) is well resolved in
<1000 s.

N (4.9)
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V. SUMMARY

In this paper we have obtained exactly the power spec-
trum and residence-time distribution characterizing a
two-level system whose dynamics are described using
time-dependent transition rates. We have applied our re-
sults to calculate the power spectrum and the residence-
time distribution both for a system described by activated
transition rates and for a two-state tunneling undergoing
dissipative quantum tunneling.

In the adiabatic regime considered in this paper, the
power spectrum is the sum of a signal, which has the
same temporal periodicity as the drive, and a noise com-
ponent, which is the product of an exponential and a
periodic function. This simple form for the power spec-
trum even in the case of strong driving indicates that -
function subharmonics in the power spectrum can appear
only if the adiabatic approximation has broken down.
This result may be a useful tool in trying to elucidate the
underlying dynamics of driven noisy systems.
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APPENDIX A: EVALUATION OF n , (t|x,,,)

In this appendix the conditional probability that the
system is in state (+), given that it was in state x at time
tg, n 4 (t|xg,t,), is evaluated so that the properties used in
Sec. II are apparent. It will be shown that
n+(t)Elim,o_,ﬁwnJr(tlxo,to) is independent of both x,,
and ¢, and periodic in the drive period T,. Moreover, the
quantity

on  (t+7|xg,t)=n  (t+7|xg,t)—n (t+7)

is the product of an exponential e ") and a function

periodic in the drive period. These functions can be writ-
ten explicitly in terms of integrals over a single drive
period.

McNamara and Wiesenfeld [2] present the solution of
Eq. (1.1) for n_(t) given a value n_(¢y5). Defining
W(t)=W _(t)+ W (1), this solution can be written

n, ()=exp [——ft'W(t’)dt’ ]n+(to)+exp l—fttW(t’)dt’ ]f{’ W_(t")exp {ftllW(t”)dt"]dt’ : (A1)
0 0 0 0
Defining 8W(¢)=W(t)— (W) and W _(t)=W _(t)—( W_ ), and using the property that
t*—T *
s ’ (W) _ t " | — '<W)Ts t ’ ' (W)t . t " 1"
Joa_pgdt W10 “oxp | = [ 'sW(dr | =e Jiupdrw e exp [~ [lswunar | a2
one can recast this into
B B —(W)t—1ty) T, (W
n(n=e W ‘°’h(z0,:)n+(t0)———WT—f0 dt,W_(ty—ty)e " 2htg—ty,t)
1—e s
1 T — (W)t
+——~e~_—<——m‘fo dt2W_(t“t2)e Zh(t“tz,t) 5 (A3)

1
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where

t
htyt)=exp | = [ 8wt | (%)
1

Since [ i_TSS W(t*)=0, for any ¢, it follows that
h(ty,t +T,)=h(ty+T,,t)=h(1y,?.

In the limit ¢ —¢y— oo, the first two terms on the
right-hand side of Eq. (A3) become exponentially small,
and n (2) tends to a function independent of the initial
condition
no ()= Lm n(t]xe,t,)

t—ty—>o

- 1 %

xe MMt —1,0).  (AS)

Since W_ and h are both periodic functions, it follows
that n (¢t +T,)=n_(t). Knowledge of n_ (2) is sufficient
information to obtain the signal.

To obtain the noise using Eq. (2.1b), one must calculate

on (t+7|+,t)=n (t+7]+,t)—n (1)
and

n (t+7l—,t)=n_(t+7|—,t)—n (1) .
Use of Eq. (A3) yields

8n+(t+7'l_,t)
—(W)r T, -
=_—e—‘_<W—)Tf dt,W_(t—t,)e (W
1—e s °0
Xh(t—ty,t+71), (A6a)
dn (t+7|+,0)=8n,(t+7|—,t)+e " h(t,t+7) .
(A6b)
Finally, because
h(t—t,,t+7)=h(t—t,,t)h(t,t+71), (A7)
it follows that
on,(t+7|—,t)=—e P (Oh(t,t+7). (A

The expressions Egs. (A5), (A6b), and (A8) yield n  (2)
and 8n (¢t +7|x,,?) in quadrature form.

APPENDIX B: RELATION OF S(w)
TO PROPERTIES OF C(7)

In Sec. II it is shown that the correlation function
C(r)={(x(t+7)x(t)), where the brackets denote an
average over t, is the sum of two terms;
C(1)=Cg(1)+Cy(7), where Cs(7) (the signal) is periodic
with period T, and Cy(7) (the noise) can be written

Cy(r)y=e Wiy p(1) . (B1)
Here, (W)=(W_+W_) and xy [given in Eq. (2.9)]
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satisfies Y y(7+ T, )=xy(7) with period T,. Explicit cal-
culation of the functions Cg and ) y(7) is described in
Sec. II. In this appendix the power spectrum S(o) is cal-
culated in terms of the Fourier components of Cg(7) and
Xn~(7). The signal Sg(w) is comprised of §-function peaks
at zero frequency, the drive frequency and its harmonics,
and a noise Sy(w) comprised of the sum of contributions
each with width ( W), centered at zero frequency, the
drive frequency, and harmonics of the drive.

These results follow directly if one expands the func-
tions Cg(7) and X y(7) in a Fourier series and then Fourier
transforms C(7) to obtain the power spectrum. Thus we
define

]

Cs(‘T): 2

m=-—ow

imoT

és( m)e (B2)

and

mo T

xnv(t)= 3 Xylme (B3)

m=—o
It follows from Eq. (2.5) that Cg(m) is real and positive
for all m. We define the power spectrum as

S(@)= [ “drcos(wr)C(7) . (B4)

Using Eq. (B2), since Cg(m)=Cg(—m), it follows that

m=—o0

Cs(m)dlo—mawy) . (B5)
For the noise, one finds
Sylw)= fO”chos(m)e—<W>fo(T)

Xn(m)
w | (W)—imo,—ie

13
= ,,,=2_
Xn(m)

+
(W)+imo,+io

(W)Rexy(m)—Im¥y(m)mo,+o)
(W) +H(o+mo,)?

= 3

m=—o

(B6)

Finally, we note that because C(7=0)=1 [17], the
coefficients Cg(n) and ¥ y(n) obey a sum rule

C(r=0)=1= 3 [Cs(n)+Rel¥y(n)]. (B7)

n=-—ow

APPENDIX C: TRANSITION RATES
FOR A TWO-STATE SYSTEM
UNDERGOING DISSIPATIVE TUNNELING

In this appendix we discuss the temperature depen-
dence of the transition rates of a two-state system in the
regime where quantum-mechanical tunneling rather than
thermal activation dominates. This system is discussed in
detail elsewhere [13]; here we summarize a few useful re-
sults.

The relevant quantum-mechanical Hamiltonian de-
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scribes a two-state system coupled to an ensemble of har-
monic oscillators [13]:

H=leo,—iho, +o, 3V, (bl +b)+%F 0,, (CD
n n

where ¢ is the asymmetry energy, A is the tunneling ma-
trix element, the o; are Pauli matrices, and b]; is a har-
monic oscillator creation operator with frequency o,.
All necessary information about the effects of the envi-
ronment is contained in the spectral density
J(w)=7r/22,]V3,8(w—wn). Tunneling in metals [18] is
described by Ohmic dissipation, J(w)=a(27fiw) for
w<<Q,, where (Q, is a cutoff frequency large compared
to A [19].

A parameter determining the dynamics is the renor-
malized tunneling matrix element A,, related to A by
A, =A(A/Q,)*179 where Q. is the bath cutoff fre-
quency [20]. If either € or aT is much greater than %A,
then the rapid fluctuations of the bath act to dephase the
tunneling particle so that the probability of a transition
between x ;. and x ;- is independent of the system’s previ-
ous history. The two transition rates obey detailed bal-
ance, and the fast rate has the form [21,22]

_— A2 [ 2k, T 2a-1 o %aT
o2 % I'(2a)
i€ :
X + , 2
I |a 2wk, T (C2)

where T is the (complex) gamma function. Note that A,
sets the overall scale only, so that normalizing W, by its
value at a reference temperature causes the scaled rate to
depend only on a, €, and T. Figure 4 shows W_(T)
below 1 K scaled by its value at 1 K for a=0.25 and
£=0.7 K. W_ is only weakly temperature dependent.
Recent experiments on submicrometer Bi wires have
measured transition rates of two-state systems coupled to
conduction electrons that below 1 K are well described
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by Eq. (C2) with values a~0.2-0.3 and A, ~1—5X 107"
[16,23]. In these experiments, application of a magnetic
field is observed to change the asymmetry energy e [24],
though apparently not a or A, [16,23]. Changes in € of
0.05 K have been induced by changes in the magnetic
field as small as 0.01 T [16]. Therefore, modulation of the
asymmetry energy as well as the temperature is possible
in this system.

Another system described by Eq. (C1) is the tunneling
of flux in a superconducting quantum interference device
(SQUID), which can also display transition rates de-
scribed by Eq. (C2) [25]. Published experimental data
[25] are described using a=1.44, though smaller values
of a have also been obtained [26]. The asymmetry of the
potential well depends on the externally applied dc mag-
netic flux in the loop.

The transition rate description used in this paper has
been shown to apply accurately to this system over a
broad frequency range. As discussed in detail elsewhere
[22,13,27], the description in terms of a two-state system
is valid so long as the tunneling matrix element A, is
much smaller than ~ U /%, which is expected to be of or-
der hundreds of degrees (e.g., THz). The result that the
dynamics are well described by a Markov process holds
so long as the tunneling rate is much less than the rate of
inelastic collisions between the two-state system and the
bath. This condition is satisfied when A,/aT <<1. In
the experiments discussed here, this ratio is of order
1073, Therefore, the theory should apply accurately for
all frequencies of interest in this system.

We stress that the results in this paper are valid for any
transition rates, whether or not a theoretical expression
such as (C2) for the rates is available. Experimental
determination of the rates provide all the necessary input
to apply the theory presented. Therefore, the results can
be applied to the tunneling of a defect in the temperature
regime above 1 K, where phonon-assisted tunneling
[18,28] causes the transition rates to increase as tempera-
ture is increased [16,23], as well as to transitions in the
activated regime.
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